3.586 \(\int \frac{1}{\cos ^{\frac{3}{2}}(c+d x) (a+b \cos (c+d x))} \, dx\)

Optimal. Leaf size=77 \[ -\frac{2 b \Pi \left (\frac{2 b}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{a d (a+b)}-\frac{2 E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a d}+\frac{2 \sin (c+d x)}{a d \sqrt{\cos (c+d x)}} \]

[Out]

(-2*EllipticE[(c + d*x)/2, 2])/(a*d) - (2*b*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/(a*(a + b)*d) + (2*Sin[
c + d*x])/(a*d*Sqrt[Cos[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.237682, antiderivative size = 77, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.217, Rules used = {2802, 3059, 2639, 12, 2805} \[ -\frac{2 b \Pi \left (\frac{2 b}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{a d (a+b)}-\frac{2 E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a d}+\frac{2 \sin (c+d x)}{a d \sqrt{\cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[1/(Cos[c + d*x]^(3/2)*(a + b*Cos[c + d*x])),x]

[Out]

(-2*EllipticE[(c + d*x)/2, 2])/(a*d) - (2*b*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/(a*(a + b)*d) + (2*Sin[
c + d*x])/(a*d*Sqrt[Cos[c + d*x]])

Rule 2802

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> -S
imp[(b^2*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n + 1))/(f*(m + 1)*(b*c - a*d)*(a^2 -
 b^2)), x] + Dist[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n
*Simp[a*(b*c - a*d)*(m + 1) + b^2*d*(m + n + 2) - (b^2*c + b*(b*c - a*d)*(m + 1))*Sin[e + f*x] - b^2*d*(m + n
+ 3)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] &
& NeQ[c^2 - d^2, 0] && LtQ[m, -1] && IntegersQ[2*m, 2*n] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !
(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) || EqQ[a, 0])))

Rule 3059

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) +
(f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Dist[C/(b*d), Int[Sqrt[a + b*Sin[e + f*x]]
, x], x] - Dist[1/(b*d), Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[e + f*x], x]/(Sqrt[a + b*Sin[e +
 f*x]]*(c + d*Sin[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2805

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2*EllipticPi[(2*b)/(a + b), (1*(e - Pi/2 + f*x))/2, (2*d)/(c + d)])/(f*(a + b)*Sqrt[c + d]), x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rubi steps

\begin{align*} \int \frac{1}{\cos ^{\frac{3}{2}}(c+d x) (a+b \cos (c+d x))} \, dx &=\frac{2 \sin (c+d x)}{a d \sqrt{\cos (c+d x)}}+\frac{2 \int \frac{-\frac{b}{2}-\frac{1}{2} a \cos (c+d x)-\frac{1}{2} b \cos ^2(c+d x)}{\sqrt{\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{a}\\ &=\frac{2 \sin (c+d x)}{a d \sqrt{\cos (c+d x)}}-\frac{\int \sqrt{\cos (c+d x)} \, dx}{a}-\frac{2 \int \frac{b^2}{2 \sqrt{\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{a b}\\ &=-\frac{2 E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a d}+\frac{2 \sin (c+d x)}{a d \sqrt{\cos (c+d x)}}-\frac{b \int \frac{1}{\sqrt{\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{a}\\ &=-\frac{2 E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a d}-\frac{2 b \Pi \left (\frac{2 b}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{a (a+b) d}+\frac{2 \sin (c+d x)}{a d \sqrt{\cos (c+d x)}}\\ \end{align*}

Mathematica [B]  time = 2.92873, size = 199, normalized size = 2.58 \[ -\frac{\frac{2 \sin (c+d x) \left (\left (2 a^2-b^2\right ) \Pi \left (-\frac{b}{a};\left .-\sin ^{-1}\left (\sqrt{\cos (c+d x)}\right )\right |-1\right )+2 a (a+b) F\left (\left .\sin ^{-1}\left (\sqrt{\cos (c+d x)}\right )\right |-1\right )-2 a b E\left (\left .\sin ^{-1}\left (\sqrt{\cos (c+d x)}\right )\right |-1\right )\right )}{a b \sqrt{\sin ^2(c+d x)}}+\frac{6 b \Pi \left (\frac{2 b}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{a+b}+\frac{2 a \left (2 F\left (\left .\frac{1}{2} (c+d x)\right |2\right )-\frac{2 a \Pi \left (\frac{2 b}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{a+b}\right )}{b}-\frac{4 \sin (c+d x)}{\sqrt{\cos (c+d x)}}}{2 a d} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Cos[c + d*x]^(3/2)*(a + b*Cos[c + d*x])),x]

[Out]

-((6*b*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/(a + b) + (2*a*(2*EllipticF[(c + d*x)/2, 2] - (2*a*EllipticP
i[(2*b)/(a + b), (c + d*x)/2, 2])/(a + b)))/b - (4*Sin[c + d*x])/Sqrt[Cos[c + d*x]] + (2*(-2*a*b*EllipticE[Arc
Sin[Sqrt[Cos[c + d*x]]], -1] + 2*a*(a + b)*EllipticF[ArcSin[Sqrt[Cos[c + d*x]]], -1] + (2*a^2 - b^2)*EllipticP
i[-(b/a), -ArcSin[Sqrt[Cos[c + d*x]]], -1])*Sin[c + d*x])/(a*b*Sqrt[Sin[c + d*x]^2]))/(2*a*d)

________________________________________________________________________________________

Maple [B]  time = 3.508, size = 354, normalized size = 4.6 \begin{align*} -2\,{\frac{1}{ \left ( a-b \right ) a\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sin \left ( 1/2\,dx+c/2 \right ) \sqrt{2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}d} \left ( -2\,\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}} \left ( a-b \right ) \cos \left ( 1/2\,dx+c/2 \right ) \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-b\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}{\it EllipticPi} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,-2\,{\frac{b}{a-b}},\sqrt{2} \right ) \sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}+\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) a-\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) b \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/cos(d*x+c)^(3/2)/(a+b*cos(d*x+c)),x)

[Out]

-2*(-2*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(a-b)*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2-b*(s
in(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2))*
(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)+(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(sin
(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a-(-2*sin(1/2*
d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*Ellipti
cE(cos(1/2*d*x+1/2*c),2^(1/2))*b)/a/(a-b)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2
*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (b \cos \left (d x + c\right ) + a\right )} \cos \left (d x + c\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)^(3/2)/(a+b*cos(d*x+c)),x, algorithm="maxima")

[Out]

integrate(1/((b*cos(d*x + c) + a)*cos(d*x + c)^(3/2)), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)^(3/2)/(a+b*cos(d*x+c)),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)**(3/2)/(a+b*cos(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (b \cos \left (d x + c\right ) + a\right )} \cos \left (d x + c\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)^(3/2)/(a+b*cos(d*x+c)),x, algorithm="giac")

[Out]

integrate(1/((b*cos(d*x + c) + a)*cos(d*x + c)^(3/2)), x)